
Stream Runtime Verification
Martin Leucker

Together with the whole TeSSLa Team
(Lukas Convent, Hannes Kallwies, Martin Sachenbacher, Malte Schmitz,

Daniel Thoma, Volker Stolz, Cesar Sanchez, and many others)

Plan

• Stream Runtime Verification
• LOLA
• TeSSLa

• Language
• Eco-System

• Control
• Cyber-Physical Systems
• Controllers
• TeSSLa/ROS bridge

Motivation

Streams

Streams

Concurrency/Distribution

Streams

Streams

Time? Synchrony/Ticks

Equational specifications, data, time,
concurrency

stream σ of type T is a finite sequence of values from
T . We let σ(i), i ≥ 0 denote the value of the stream at
time step i.

Definition 1 (LOLA specification) A LOLA specifica-
tion is a set of equations over typed stream variables,
of the form

s1 = e1(t1, . . . , tm, s1, . . . , sn)
...

...
sn = en(t1, . . . , tm, s1, . . . , sn),

where s1, . . . , sn are called the dependent variables
and t1, . . . , tm are called the independent variables,
and e1, . . . , en are stream expressions over s1, . . . , sn

and t1, . . . , tm. Independent variables refer to input
streams and dependent variables refer to output streams∗.
A LOLA specification can also declare certain output
boolean variables as triggers. Triggers generate notifica-
tions at instants when their corresponding values become
true . Triggers are specified in LOLA as

trigger ϕ

where ϕ is a boolan expression over streams.

A stream expression is constructed as follows:
• If c is a constant of type T , then c is an atomic
stream expression of type T ;

• If s is a stream variable of type T , then s is an
atomic stream expression of type T ;

• Let f : T1 ×T2×· · ·×Tk #→ T be a k-ary operator.
If for 1 ≤ i ≤ k, ei is an expression of type Ti, then
f(e1, . . . , ek) is a stream expression of type T ;

• If b is a boolean stream expression and e1, e2 are
stream expressions of type T , then ite(b, e1, e2)
is a stream expression of type T ; note that ite
abbreviates if-then-else.

• If e is a stream expression of type T , c is a constant
of type T , and i is an integer, then e[i, c] is a stream
expression of type T . Informally, e[i, c] refers to the
value of the expression e offset i positions from the
current position. The constant c indicates the default
value to be provided, in case an offset of i takes us
past the end or before the beginning of the stream.

∗In our implementation we partition the dependent variables into
output variables and intermediate variables to distinguish streams that
are of interest to the user and those that are used only to facilitate
the computation of other streams. However, for the description of
the semantics and the algorithm this distinction is not important, and
hence we will ignore it in this paper.

Example 1 Let t1, t2 be stream variables of type
boolean and t3 be a stream variable of type integer. The
following is an example of a LOLA specification with
t1, t2 and t3 as independent variables:

s1 = true

s2 = t3
s3 = t1 ∨ (t3 ≤ 1)
s4 = ((t3)2 + 7) mod 15
s5 = ite(s3, s4, s4 + 1)
s6 = ite(t1, t3 ≤ s4,¬s3)
s7 = t1[+1, false]
s8 = t1[−1, true]
s9 = s9[−1, 0] + (t3 mod 2)
s10 = t2 ∨ (t1 ∧ s10[1, true])

Stream variable s1 denotes a stream whose value is
true at all positions, while s2 denotes a stream whose
values are the same at all positions as those in t3. The
values of the streams corresponding to s3, . . . , s6 are
obtained by evaluating their defining expressions place-
wise at each position. The stream corresponding to s7

is obtained by taking at each position i the value of
the stream corresponding to t1 at position i + 1, except
at the last position, which assumes the default value
false. Similarly for the stream for s8, whose values are
equal to the values of the stream for t1 shifted by one
position, except that the value at the first position is the
default value true. The stream specified by s9 counts
the number of odd entries in the stream assigned to t3 by
accumulating (t3 mod 2). Finally, s10 denotes the stream
that gives at each position the value of the temporal
formula t1Until t2 with the stipulation that unresolved
eventualities be regarded as satisfied at the end of the
trace.

B. Specification Language: Semantics
The semantics of LOLA specifications is defined in

terms of evaluation models, which describe the relation
between input streams and output streams.

Definition 2 (Evaluation Models) Let ϕ be a LOLA
specification over independent variables t1, . . . , tm with
types T1, . . . , Tm, and dependent variables s1, . . . , sn

with types Tm+1, . . . , Tm+n. Let τ1, . . . , τm be streams
of lengthN+1, with τi of type Ti. The tuple ⟨σ1, . . . ,σn⟩
of streams of length N + 1 with appropriate types is
called an evaluation model, if for each equation in ϕ

si = ei(t1, . . . , tm, s1, . . . , sn),

⟨σ1, . . . ,σn⟩ satisfies the following associated equations:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N

LOLA
[D’Angelo et al.]

Example
stream σ of type T is a finite sequence of values from
T . We let σ(i), i ≥ 0 denote the value of the stream at
time step i.

Defi nition 1 (LOLA specifi cation) A LOLA specifica-
tion is a set of equations over typed stream variables,
of the form

s1 = e1(t1, . . . , tm, s1, . . . , sn)
...

...
sn = en(t1, . . . , tm, s1, . . . , sn),

where s1, . . . , sn are called the dependent variables
and t1, . . . , tm are called the independent variables,
and e1, . . . , en are stream expressions over s1, . . . , sn

and t1, . . . , tm. Independent variables refer to input
streams and dependent variables refer to output streams∗.
A LOLA specification can also declare certain output
boolean variables as triggers. Triggers generate notifica-
tions at instants when their corresponding values become
true. Triggers are specified in LOLA as

trigger ϕ

where ϕ is a boolan expression over streams.

A stream expression is constructed as follows:
• If c is a constant of type T , then c is an atomic
stream expression of type T ;

• If s is a stream variable of type T , then s is an
atomic stream expression of type T ;

• Let f : T1 ×T2×· · ·×Tk #→ T be a k-ary operator.
If for 1 ≤ i ≤ k, ei is an expression of type Ti, then
f(e1, . . . , ek) is a stream expression of type T ;

• If b is a boolean stream expression and e1, e2 are
stream expressions of type T , then ite(b, e1, e2)
is a stream expression of type T ; note that ite
abbreviates if-then-else.

• If e is a stream expression of type T , c is a constant
of type T , and i is an integer, then e[i, c] is a stream
expression of type T . Informally, e[i, c] refers to the
value of the expression e offset i positions from the
current position. The constant c indicates the default
value to be provided, in case an offset of i takes us
past the end or before the beginning of the stream.

∗In our implementation we partition the dependent variables into
output variables and intermediate variables to distinguish streams that
are of interest to the user and those that are used only to facilitate
the computation of other streams. However, for the description of
the semantics and the algorithm this distinction is not important, and
hence we will ignore it in this paper.

Example 1 Let t1, t2 be stream variables of type
boolean and t3 be a stream variable of type integer. The
following is an example of a LOLA specification with
t1, t2 and t3 as independent variables:

s1 = true

s2 = t3
s3 = t1 ∨ (t3 ≤ 1)
s4 = ((t3)2 + 7) mod 15
s5 = ite(s3, s4, s4 + 1)
s6 = ite(t1, t3 ≤ s4,¬s3)
s7 = t1[+1, false]
s8 = t1[−1, true]
s9 = s9[−1, 0] + (t3 mod 2)
s10 = t2 ∨ (t1 ∧ s10[1, true])

Stream variable s1 denotes a stream whose value is
true at all positions, while s2 denotes a stream whose
values are the same at all positions as those in t3. The
values of the streams corresponding to s3, . . . , s6 are
obtained by evaluating their defining expressions place-
wise at each position. The stream corresponding to s7

is obtained by taking at each position i the value of
the stream corresponding to t1 at position i + 1, except
at the last position, which assumes the default value
false. Similarly for the stream for s8, whose values are
equal to the values of the stream for t1 shifted by one
position, except that the value at the first position is the
default value true. The stream specified by s9 counts
the number of odd entries in the stream assigned to t3 by
accumulating (t3 mod 2). Finally, s10 denotes the stream
that gives at each position the value of the temporal
formula t1Until t2 with the stipulation that unresolved
eventualities be regarded as satisfied at the end of the
trace.

B. Specification Language: Semantics
The semantics of LOLA specifications is defined in

terms of evaluation models, which describe the relation
between input streams and output streams.

Defi nition 2 (Evaluation Models) Let ϕ be a LOLA
specification over independent variables t1, . . . , tm with
types T1, . . . , Tm, and dependent variables s1, . . . , sn

with types Tm+1, . . . , Tm+n. Let τ1, . . . , τm be streams
of lengthN+1, with τi of type Ti. The tuple ⟨σ1, . . . ,σn⟩
of streams of length N + 1 with appropriate types is
called an evaluation model, if for each equation in ϕ

si = ei(t1, . . . , tm, s1, . . . , sn),

⟨σ1, . . . ,σn⟩ satisfies the following associated equations:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N

t1

t2

t3

s1

s2

s3

s4

s5

Example
stream σ of type T is a finite sequence of values from
T . We let σ(i), i ≥ 0 denote the value of the stream at
time step i.

Defi nition 1 (LOLA specifi cation) A LOLA specifica-
tion is a set of equations over typed stream variables,
of the form

s1 = e1(t1, . . . , tm, s1, . . . , sn)
...

...
sn = en(t1, . . . , tm, s1, . . . , sn),

where s1, . . . , sn are called the dependent variables
and t1, . . . , tm are called the independent variables,
and e1, . . . , en are stream expressions over s1, . . . , sn

and t1, . . . , tm. Independent variables refer to input
streams and dependent variables refer to output streams∗.
A LOLA specification can also declare certain output
boolean variables as triggers. Triggers generate notifica-
tions at instants when their corresponding values become
true. Triggers are specified in LOLA as

trigger ϕ

where ϕ is a boolan expression over streams.

A stream expression is constructed as follows:
• If c is a constant of type T , then c is an atomic
stream expression of type T ;

• If s is a stream variable of type T , then s is an
atomic stream expression of type T ;

• Let f : T1 ×T2×· · ·×Tk #→ T be a k-ary operator.
If for 1 ≤ i ≤ k, ei is an expression of type Ti, then
f(e1, . . . , ek) is a stream expression of type T ;

• If b is a boolean stream expression and e1, e2 are
stream expressions of type T , then ite(b, e1, e2)
is a stream expression of type T ; note that ite
abbreviates if-then-else.

• If e is a stream expression of type T , c is a constant
of type T , and i is an integer, then e[i, c] is a stream
expression of type T . Informally, e[i, c] refers to the
value of the expression e offset i positions from the
current position. The constant c indicates the default
value to be provided, in case an offset of i takes us
past the end or before the beginning of the stream.

∗In our implementation we partition the dependent variables into
output variables and intermediate variables to distinguish streams that
are of interest to the user and those that are used only to facilitate
the computation of other streams. However, for the description of
the semantics and the algorithm this distinction is not important, and
hence we will ignore it in this paper.

Example 1 Let t1, t2 be stream variables of type
boolean and t3 be a stream variable of type integer. The
following is an example of a LOLA specification with
t1, t2 and t3 as independent variables:

s1 = true

s2 = t3
s3 = t1 ∨ (t3 ≤ 1)
s4 = ((t3)2 + 7) mod 15
s5 = ite(s3, s4, s4 + 1)
s6 = ite(t1, t3 ≤ s4,¬s3)
s7 = t1[+1, false]
s8 = t1[−1, true]
s9 = s9[−1, 0] + (t3 mod 2)
s10 = t2 ∨ (t1 ∧ s10[1, true])

Stream variable s1 denotes a stream whose value is
true at all positions, while s2 denotes a stream whose
values are the same at all positions as those in t3. The
values of the streams corresponding to s3, . . . , s6 are
obtained by evaluating their defining expressions place-
wise at each position. The stream corresponding to s7

is obtained by taking at each position i the value of
the stream corresponding to t1 at position i + 1, except
at the last position, which assumes the default value
false. Similarly for the stream for s8, whose values are
equal to the values of the stream for t1 shifted by one
position, except that the value at the first position is the
default value true. The stream specified by s9 counts
the number of odd entries in the stream assigned to t3 by
accumulating (t3 mod 2). Finally, s10 denotes the stream
that gives at each position the value of the temporal
formula t1Until t2 with the stipulation that unresolved
eventualities be regarded as satisfied at the end of the
trace.

B. Specification Language: Semantics
The semantics of LOLA specifications is defined in

terms of evaluation models, which describe the relation
between input streams and output streams.

Defi nition 2 (Evaluation Models) Let ϕ be a LOLA
specification over independent variables t1, . . . , tm with
types T1, . . . , Tm, and dependent variables s1, . . . , sn

with types Tm+1, . . . , Tm+n. Let τ1, . . . , τm be streams
of lengthN+1, with τi of type Ti. The tuple ⟨σ1, . . . ,σn⟩
of streams of length N + 1 with appropriate types is
called an evaluation model, if for each equation in ϕ

si = ei(t1, . . . , tm, s1, . . . , sn),

⟨σ1, . . . ,σn⟩ satisfies the following associated equations:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N

t1

t2

t3

s1

s2

s3

s4

s5

f

t

3

t

3

f

1

2

Example
stream σ of type T is a finite sequence of values from
T . We let σ(i), i ≥ 0 denote the value of the stream at
time step i.

Defi nition 1 (LOLA specifi cation) A LOLA specifica-
tion is a set of equations over typed stream variables,
of the form

s1 = e1(t1, . . . , tm, s1, . . . , sn)
...

...
sn = en(t1, . . . , tm, s1, . . . , sn),

where s1, . . . , sn are called the dependent variables
and t1, . . . , tm are called the independent variables,
and e1, . . . , en are stream expressions over s1, . . . , sn

and t1, . . . , tm. Independent variables refer to input
streams and dependent variables refer to output streams∗.
A LOLA specification can also declare certain output
boolean variables as triggers. Triggers generate notifica-
tions at instants when their corresponding values become
true. Triggers are specified in LOLA as

trigger ϕ

where ϕ is a boolan expression over streams.

A stream expression is constructed as follows:
• If c is a constant of type T , then c is an atomic
stream expression of type T ;

• If s is a stream variable of type T , then s is an
atomic stream expression of type T ;

• Let f : T1 ×T2×· · ·×Tk #→ T be a k-ary operator.
If for 1 ≤ i ≤ k, ei is an expression of type Ti, then
f(e1, . . . , ek) is a stream expression of type T ;

• If b is a boolean stream expression and e1, e2 are
stream expressions of type T , then ite(b, e1, e2)
is a stream expression of type T ; note that ite
abbreviates if-then-else.

• If e is a stream expression of type T , c is a constant
of type T , and i is an integer, then e[i, c] is a stream
expression of type T . Informally, e[i, c] refers to the
value of the expression e offset i positions from the
current position. The constant c indicates the default
value to be provided, in case an offset of i takes us
past the end or before the beginning of the stream.

∗In our implementation we partition the dependent variables into
output variables and intermediate variables to distinguish streams that
are of interest to the user and those that are used only to facilitate
the computation of other streams. However, for the description of
the semantics and the algorithm this distinction is not important, and
hence we will ignore it in this paper.

Example 1 Let t1, t2 be stream variables of type
boolean and t3 be a stream variable of type integer. The
following is an example of a LOLA specification with
t1, t2 and t3 as independent variables:

s1 = true

s2 = t3
s3 = t1 ∨ (t3 ≤ 1)
s4 = ((t3)2 + 7) mod 15
s5 = ite(s3, s4, s4 + 1)
s6 = ite(t1, t3 ≤ s4,¬s3)
s7 = t1[+1, false]
s8 = t1[−1, true]
s9 = s9[−1, 0] + (t3 mod 2)
s10 = t2 ∨ (t1 ∧ s10[1, true])

Stream variable s1 denotes a stream whose value is
true at all positions, while s2 denotes a stream whose
values are the same at all positions as those in t3. The
values of the streams corresponding to s3, . . . , s6 are
obtained by evaluating their defining expressions place-
wise at each position. The stream corresponding to s7

is obtained by taking at each position i the value of
the stream corresponding to t1 at position i + 1, except
at the last position, which assumes the default value
false. Similarly for the stream for s8, whose values are
equal to the values of the stream for t1 shifted by one
position, except that the value at the first position is the
default value true. The stream specified by s9 counts
the number of odd entries in the stream assigned to t3 by
accumulating (t3 mod 2). Finally, s10 denotes the stream
that gives at each position the value of the temporal
formula t1Until t2 with the stipulation that unresolved
eventualities be regarded as satisfied at the end of the
trace.

B. Specification Language: Semantics
The semantics of LOLA specifications is defined in

terms of evaluation models, which describe the relation
between input streams and output streams.

Defi nition 2 (Evaluation Models) Let ϕ be a LOLA
specification over independent variables t1, . . . , tm with
types T1, . . . , Tm, and dependent variables s1, . . . , sn

with types Tm+1, . . . , Tm+n. Let τ1, . . . , τm be streams
of lengthN+1, with τi of type Ti. The tuple ⟨σ1, . . . ,σn⟩
of streams of length N + 1 with appropriate types is
called an evaluation model, if for each equation in ϕ

si = ei(t1, . . . , tm, s1, . . . , sn),

⟨σ1, . . . ,σn⟩ satisfies the following associated equations:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N

t1

t2

t3

s6

s7

s8

s9

s10

f

t

3

t

t

0

t

Example – Reaching the end of the Trace
stream σ of type T is a finite sequence of values from
T . We let σ(i), i ≥ 0 denote the value of the stream at
time step i.

Defi nition 1 (LOLA specifi cation) A LOLA specifica-
tion is a set of equations over typed stream variables,
of the form

s1 = e1(t1, . . . , tm, s1, . . . , sn)
...

...
sn = en(t1, . . . , tm, s1, . . . , sn),

where s1, . . . , sn are called the dependent variables
and t1, . . . , tm are called the independent variables,
and e1, . . . , en are stream expressions over s1, . . . , sn

and t1, . . . , tm. Independent variables refer to input
streams and dependent variables refer to output streams∗.
A LOLA specification can also declare certain output
boolean variables as triggers. Triggers generate notifica-
tions at instants when their corresponding values become
true. Triggers are specified in LOLA as

trigger ϕ

where ϕ is a boolan expression over streams.

A stream expression is constructed as follows:
• If c is a constant of type T , then c is an atomic
stream expression of type T ;

• If s is a stream variable of type T , then s is an
atomic stream expression of type T ;

• Let f : T1 ×T2×· · ·×Tk #→ T be a k-ary operator.
If for 1 ≤ i ≤ k, ei is an expression of type Ti, then
f(e1, . . . , ek) is a stream expression of type T ;

• If b is a boolean stream expression and e1, e2 are
stream expressions of type T , then ite(b, e1, e2)
is a stream expression of type T ; note that ite
abbreviates if-then-else.

• If e is a stream expression of type T , c is a constant
of type T , and i is an integer, then e[i, c] is a stream
expression of type T . Informally, e[i, c] refers to the
value of the expression e offset i positions from the
current position. The constant c indicates the default
value to be provided, in case an offset of i takes us
past the end or before the beginning of the stream.

∗In our implementation we partition the dependent variables into
output variables and intermediate variables to distinguish streams that
are of interest to the user and those that are used only to facilitate
the computation of other streams. However, for the description of
the semantics and the algorithm this distinction is not important, and
hence we will ignore it in this paper.

Example 1 Let t1, t2 be stream variables of type
boolean and t3 be a stream variable of type integer. The
following is an example of a LOLA specification with
t1, t2 and t3 as independent variables:

s1 = true

s2 = t3
s3 = t1 ∨ (t3 ≤ 1)
s4 = ((t3)2 + 7) mod 15
s5 = ite(s3, s4, s4 + 1)
s6 = ite(t1, t3 ≤ s4,¬s3)
s7 = t1[+1, false]
s8 = t1[−1, true]
s9 = s9[−1, 0] + (t3 mod 2)
s10 = t2 ∨ (t1 ∧ s10[1, true])

Stream variable s1 denotes a stream whose value is
true at all positions, while s2 denotes a stream whose
values are the same at all positions as those in t3. The
values of the streams corresponding to s3, . . . , s6 are
obtained by evaluating their defining expressions place-
wise at each position. The stream corresponding to s7

is obtained by taking at each position i the value of
the stream corresponding to t1 at position i + 1, except
at the last position, which assumes the default value
false. Similarly for the stream for s8, whose values are
equal to the values of the stream for t1 shifted by one
position, except that the value at the first position is the
default value true. The stream specified by s9 counts
the number of odd entries in the stream assigned to t3 by
accumulating (t3 mod 2). Finally, s10 denotes the stream
that gives at each position the value of the temporal
formula t1Until t2 with the stipulation that unresolved
eventualities be regarded as satisfied at the end of the
trace.

B. Specification Language: Semantics
The semantics of LOLA specifications is defined in

terms of evaluation models, which describe the relation
between input streams and output streams.

Defi nition 2 (Evaluation Models) Let ϕ be a LOLA
specification over independent variables t1, . . . , tm with
types T1, . . . , Tm, and dependent variables s1, . . . , sn

with types Tm+1, . . . , Tm+n. Let τ1, . . . , τm be streams
of lengthN+1, with τi of type Ti. The tuple ⟨σ1, . . . ,σn⟩
of streams of length N + 1 with appropriate types is
called an evaluation model, if for each equation in ϕ

si = ei(t1, . . . , tm, s1, . . . , sn),

⟨σ1, . . . ,σn⟩ satisfies the following associated equations:

σi(j) = val(ei)(j) for 0 ≤ j ≤ N

t1

t2

t3

s6

s7

s8

s9

s10

f

t

3

t

t

t

0

t

t

2

t

t

f

0

t

t

1

t

f

t

1

t

Defining new Streams

Defining new Streams

Runtime Verification as Stream Transformation

Streams

Time? Synchrony/Ticks

Streams

Time? Synchrony/Ticks

Time triggered systems

Streams

Time? Synchrony/Ticks

Time triggered systems

Event-triggered

Tessla’s Streams

Time? Events

Tessla’s Streams

Time? Events

x

Tessla’s Streams

Time? Events

x x

Tessla’s Streams

Time? Events

x

x x

Tessla’s Streams

Time? Events

x

x x

Tessla’s Streams

Time? Events

4

x

x x

Tessla’s Streams

Time? Events

4

x

x x

3

Tessla’s Streams

Time? Events

4

x

x x

3 45

Streams of Programs - After Discretization

Program-level Perspective

Abstract representation of system state and behaviour

Values Program events
e.g., of a program

variable x

e.g., call to my_func()

5 6 1 2
@cpu1 @cpu2

I Observation over time) Streams

I Location

SMD 2015 6/20

Streams

Program-level Perspective

Abstract representation of system state and behaviour

Values Program events
e.g., of a program

variable x

e.g., call to my_func()

5 6 1 2
@cpu1 @cpu2

I Observation over time) Streams

I Location

SMD 2015 6/20

Defining new StreamsStream-based Representation

Time

Value x 998 42 2012 1280 10 1404

Event irq4
Event (with value) f 17 98 0 23

x > 1023

changeOf(x)

f inPast <=10ms

Observations
(Input streams)

Derived streams
(definable)

I compute information from observations

I formulate and monitor complex correctness properties

I define complex triggers

SMD 2015 7/20

Defining new StreamsStream-based Representation

Time

Value x 998 42 2012 1280 10 1404

Event irq4
Event (with value) f 17 98 0 23

x > 1023

changeOf(x)

f inPast <=10ms

Observations
(Input streams)

Derived streams
(definable)

I compute information from observations

I formulate and monitor complex correctness properties

I define complex triggers

SMD 2015 7/20

Runtime Verification as Stream Transformation

Runtime Verification
with Uncertainties

Lola Example

Using Abstract Domains

Symbolic Evaluation

Hannes Kallwies, Martin Leucker, César Sánchez: Symbolic Runtime Verification for Monitoring Under Uncertainties
and Assumptions. ATVA 2022: 117-134

TeSSLa

TeSSLa

• Temporal
• Stream-based
• Specification
• Language

• Specifying the (expected) behavior of a system’s execution

Language - Overview

Core
Language

Type
System

Macro
System

Meta
Data

Module
System

Design Goals – Core Language

• Declarative style: Specification rather than implementation
• Modularity: Allowing abstractions based on few primitives

(6 operators: unit, nil, lift, last, delay, time)
• Time as first-class citizen
• Abstractions for both events and signals
• Recursion to reason about past
• Implementable with limited memory

(For a restricted fragment)

TeSSLa by example
Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa by Example

a 2 4 6

b 1 3 5

c 3 5 7 11

def c := a + b

x

c 0 1 2 3 4 5 6

r

c 0 1 2 3 0 1 0 1 2

def c := eventCount(x, reset = r)

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 19

TeSSLa operators: Signal Lift (of Addition)

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Signal Lift of Addition

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the addition on integer numbers can be lifted to streams of integers.

a 2 4

b 1 3

a + b 3 5 7

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 21

TeSSLa operators: Signal Lift (of Negation)
Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Signal Lift of Negation

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the negation of booleans can be lifted to a stream of booleans.

a true false true

¬a false true false

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 22

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Signal Lift of If-Then-Else

I Signal lift allows to lift operations on arbitrary data types to streams.
I E.g. the ternary if-then-else function can be lifted to

a stream of booleans and two streams of identical type.

a 1 3

b 2 4

a > b false true false

if a > b then a else b 2 3 4

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 23

TeSSLa operators: Signal Lift (of If-Then-Else)

TeSSLa operators: Last

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Last

I Needed to define properties over sequences of events.
I Last allows to refer to the values of events on one stream

that occurred strictly before the events on another stream

1 2 3 4x

y

1 3 3last(x, y)

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 24

Read last(x,y) as last of x when event on y

TeSSLa operators: Time

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Time

I Provides access to the timestamps of events
I Produces events carrying their timestamps as data value
I Hence all operators for data values can be applied to timestamps.

1 3 4
x

1 3 4time(x)

1 3last(time(x), x)

2 1time(x) ≠ last(time(x), x)

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 25

TeSSLa operators: Filter

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Filter

I Process streams in an event-oriented fashion
I Filter the events of one stream based on a second boolean stream

interpreted as piecewise constant signal.

1 2 3 4 5x

a true false true

1 4 5filter(x, a)

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 26

TeSSLa operators: Merge

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Merge

I Process streams in an event-oriented fashion
I Merge combines two streams into one,

giving preference to the first stream when both streams contain identical
timestamps.

2 4x

1 3y

2 1 4merge(x, y)

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 27

TeSSLa operators: Nil and Cons

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

TeSSLa Operators: Const and Nil

I The constant nil for the empty stream
I The operator const converting a value to a stream

starting with that value at timestamp 0.

Implicit Conversions
I Integer and Boolean constants

are converted to streams via const.
I Build-in operators on integers and Booleans

are lifted to streams via signal lift.

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 28

Recursive Equations in Tessla

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

Recursive Equations in TeSSLa

I The last operator allows to write recursive equations
I The merge operation allows to initialize recursive equations with an

initial event from an other stream.
I Express aggregation operations like the sum over all values of a stream.

2 1 3x

0 2 3last(s, x)

s 0 2 3 5

def s := merge(last(s, x) + x, 0)

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 29

4

7

Create Events

in write: Events[Unit]

def timeout := const(5, write)

def error := delay(timeout, write)
out error

Data types in TeSSLa

• TeSSLa strongly typed, generic types
• TeSSLa agnostically wrt any time or data domain
• Different data structures can be used to represent time and data
• Monitoring in hardware:

atomic data types, e.g. int or float
• Monitoring in software:

complex data structures like lists, trees and maps

Macros in TeSSLa

• Few primitive operators
• Readable specifications via Macros
• TeSSLa Standard Library for common useful stuff
• Domain specific libraries for application areas/domains (anticipated)

• Timex/Autosar library
• PastLTL
• Petri nets (under development)

Macros in TeSSLa: EventCount

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

Macros in TeSSLa: eventCount

Count the number of events on `values`.

def eventCount[A,B](values: Events[A]) := {

def count: Events[Int] := merge(
increment counter

last(count, values) + 1

, 0)

count

}

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 31

Modules in TeSSLa

• Sets of Macros can be grouped to modules/libraries
• TeSSLa Standard Library for common useful stuff
• Domain specific libraries for application areas/domains (anticipated)

• Timex/Autosar library
• PastLTL
• Petri nets (under development)

Macros in TeSSLa: EventCount with Reset

Interactive Workflow Program Flow TeSSLa Example Scenario Timing Event Ordering Data Values Demo

Macros in TeSSLa: eventCount With Reset

Count the number of events on `values`. Reset the output to 0

on every event on `reset`.

def eventCount[A,B](values: Events[A], reset: Events[B]) := {

def count: Events[Int] := merge(

`reset` contains the latest event

if merge(time(reset) > time(values), false)

then 0

`reset` and `values` latest event happen simultaneously

else if merge(time(reset) == time(values), false)

then 1

`values` contains the latest event --> increment counter

else last(count, values) + 1

, 0)

count

}

Convent, Hungerecker, Scheffel, Schmitz, Thoma, Weiss RV 2018 32

Meta Data / Annotations

• TeSSLa allows annotations similar like @interface in Java
• Several categories for annotations

• Documentation
• Correspondence to Source Code (C-Code)
• Graphical presentation of streams / dashboard support
• Directives for Example Generator
• Directives for bridging to frameworks (ROS)

TeSSLa by Example

TeSSLa by Example

TeSSLa by Example

TeSSLa by Example

TeSSLa compilers

Observation/Instrumentation

• Instrumenter for C code
integrated in compiler

• Accemic’s CEDARtools for non-
intrusive hardware monitoring

• Connection to other
instrumentation tools via
generic annotation system

Supporting Web IDE

Supporting Online Documentation

TeSSLa Ecosystem

• User Libraries
• Macro system allows definition of application-specific libraries
• E.g. AUTOSAR Timex, Past LTL libraries...

• Tutorials
• Extensive tutorials about the usage of the TeSSLa language and tools.

• Open-Source availability
• Free availability of most parts of the tool chain.
• Community-driven project.

TeSSLa for professional usage

• Clear definition of license
• Separation of

• Language,
• Compilers, and
• Tools

• Language specification
• TeSSLa and TeSSLa Core

• Reference Compiler (Interpreter)

Resources

• TeSSLa Website:

https://www.tessla.io/

• TeSSLa Playground:

https://play.tessla.io/

• TeSSLa Sourcecode:

https://git.tessla.io/

• Contact:

info@tessla.io

tessla.io

TeSSLa Installation and First-Steps

Installation – TeSSLa Bundle

• contains a compiler, interpreter and other useful tools for executing
TeSSLa specifications
• written in Scala and available as a single JAR archive.
• The TeSSLa bundle is licensed under Apache 2.0 license.

Run java -jar tessla.jar -h for information on the usage of the TeSSLa
command line tool.

https://git.tessla.io/tessla/tessla/builds/artifacts/master/raw/target/sc
ala-3.2.2/tessla-assembly-2.0.0.jar?job=deploy

https://www.scala-lang.org/
https://www.tessla.io/tessla-license.txt
https://git.tessla.io/tessla/tessla/builds/artifacts/master/raw/target/scala-3.2.2/tessla-assembly-2.0.0.jar?job=deploy
https://git.tessla.io/tessla/tessla/builds/artifacts/master/raw/target/scala-3.2.2/tessla-assembly-2.0.0.jar?job=deploy

Logging Library

• For instrumenting C-Code

https://www.tessla.io/logging.zip

https://www.tessla.io/logging.zip

TeSSLa libraries

Futher libraries

https://www.tessla.io/usrLibs/overview/

https://www.tessla.io/usrLibs/overview/

A simple specification

• specification.tessla

in x: Events[Int]
in y: Events[Int]

def diff = sum(x) - sum(y)

liftable
def abs(x: Int) = if x < 0 then -x else x
def tooBig = abs(diff) >= 10

out diff
out tooBig

Input trace

• trace.input

10: x = 2
17: x = 1
19: y = 4
37: x = 7
45: x = 6
78: y = 9
98: x = 2

In the playground

https://play.tessla.io

https://play.tessla.io/

Playground

@VisSTYLE

Running

• java -jar tessla.jar interpreter
specification.tessla trace.input

0: tooBig = false
0: diff = 0
10: tooBig = false
10: diff = 2
17: tooBig = false
17: diff = 3
19: tooBig = false
19: diff = -1

37: tooBig = false
37: diff = 6
45: tooBig = true
45: diff = 12
78: tooBig = false
78: diff = 3
98: tooBig = false
98: diff = 5

TeSSLa Scala/Rust Compiler

• Scala compiler
• allows compilation to Scala code or a JAR file executable on the Java JVM.

java -jar tessla.jar compile-scala -j monitor.jar specification.tessla
• creates an executeable Jar-File monitor.jar which receives inputs and

produces outputs via stdio in the same format as the interpreter

• Rust compiler
java -jar tessla.jar compile-rust -b monitor specification.tessla

• creates an executable monitor which receives inputs and produces outputs
via stdio in the same format as the interpreter

Instrumenting C-Code

• Instrument the C source code using the observation annotations
defined in the TeSSLa specification:

java -jar tessla.jar instrumenter spec.tessla main.c
/usr/lib/gcc/x86_64-linux-gnu/9/include/

• Instrumentation is done on the LLVM level and specific setup for your
machine is needed

For convenience

• As long as it works

docker run -v $(pwd):/wd -w /wd --rm registry.isp.uni-
luebeck.de/tessla/tessla-docker:2.0.0 rv spec.tessla main.c

TeSSLa Language in Detail

Let‘s work through the tutorial

 https://www.tessla.io/tutorial/

https://www.tessla.io/tutorial/

RV with TeSSLa

main.c spec.tessla

void foo() {
int x = 42;

}

int main() {
for (int i = 0; i < 5; i++) {

foo();
}
return 0;

}

@InstFunctionCall("foo")
in foo: Events[Unit]
out foo
def num := count(foo)
out num

Explore

• Instrument the C source
java -jar tessla.jar instrumenter spec.tessla main.c
/usr/lib/gcc/x86_64-linux-gnu/9/include/

• Compile the instrumented C code
gcc main.c.instrumented.c -llogging -pthread -ldl -o main

• Execute the compiled program, creating the file trace.log
./main

• Monitor the trace
java -jar tessla.jar interpreter --base-time 1ns spec.tessla trace.log

• Alternatively
docker run -v $(pwd):/wd -w /wd --rm registry.isp.uni-luebeck.de/tessla/tessla-
docker:2.0.0 rv spec.tessla main.c

Measuring a Function's Runtime

Checking Correctness of Values

Multiple Threads

Checking Correct Locking

Checking Correct Locking (2)

Cyber-Physical Systems

Cyber-Physical System

• Communicating hybrid systems
• Communicating embedded systems interacting with the physical

world

• Discrete Math, Events, Propositions
• Continuous Math, Signals

Damped Harmonic Oscillator

m · y´´ = − D · y − d · y´

y’

d·y’

y
D·y

y(
t)

Solving of ODE – Numerical Approximations

• Euler’s method

Solving of ODE – A Variety of Methods

By Svchbderivative work:
tobi (talk) - RK Verfahren,
CC BY-SA 3.0,
https://commons.wikime
dia.org/w/index.php?curi
d=32717385

ODEs in TeSSLa

Damped Harmonic Oscillator

m · y´´ = − D · y − d · y´

y’

d·y’

y
D·y

y(
t)

The Spring Example
Realization in TeSSLa. Consider the following example code in TeSSLa

where the rk4 macro in line 10 approximates the ODE given by k with ini-

tial elongation and velocity k_0 at a predefined sample rate, using the classical

Runge-Kutta method. The resulting sampled signal approx can now be com-

pared with incoming sensor data.

1 in sensor: Events[Float]

2

3 def m: Float = 0.2 # kg

4 def D: Float = 2.6 # N/m

5 def d: Float = 0.15 # kg/s

6 def y’’(t: Float , y: Float , y’: Float): Float =

7 -D / m * y - d / m * y’)

8 def y_0 = 0.2 # m

9 def y’_0 = 0.0 # m/s

10

11 def approx: Events [(Float , Float)] = rk4(y’’, y_0 , y’_0)

12 def approxY: Events[Float] = approx._1

13 def approxY ’: Events[Float] = approx._2

14 def alarm = |sensor - approxY| > ✏

2.2 Monitoring a Car

Consider the specification of a particular CPS, a car. For simplicity, a car may

be in one of three modes.

• Keep. Zero acceleration. ÿ = 0

• Accelerate. Acceleration with constant parameter c. ÿ = c

• Brake. Deceleration with a brake force (parameter d) that is proportional

4

Plot of the Damped Spring

Control

Runtime Verification
Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Runtime Verification

• Partial Verification

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Runtime Verification

• Partial Verification
• Testing Temporal

Assertions

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Runtime Verification

• Partial Verification
• Testing Temporal

Assertions
• Test Cases as Input

Sequences checked by
Monitors

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Runtime Verification

• Partial Verification
• Testing Temporal

Assertions
• Test Cases as Input

Sequences checked by
Monitors
• Debugging

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Runtime Verification

• Partial Verification
• Testing Temporal

Assertions
• Test Cases as Input

Sequences checked by
Monitors
• Debugging
• Control?

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Control from an RV Point of View
Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Control from an RV Point of View

• Monitor Output as
Feedback/
Intervention to
System

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Control from an RV Point of View

• Monitor Output as
Feedback/
Intervention to
System

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Control from an RV Point of View

• Monitor Output as
Feedback/
Intervention to
System
• Monitor has to give

more specific Output

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Control from an RV Point of View

• Monitor Output as
Feedback/
Intervention to
System
• Monitor has to give

more specific Output
• Here: Monitor

actually computes
control values

Runtime Verification Introduction to TeSSLa TeSSLa Operators Macros and Data Structures Thales Use Cases

Runtime Verification

System Monitor

Specification

Observation

Synthesis

Report

Convent, Hungerecker, Leucker, Scheffel, Schmitz, Thoma Vienna ’18 4

Self-Healing System (FDIR with RV)

Self-Healing System (FDIR with RV)

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Logging

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Logging

Monitor

Control

By Orzetto - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5000019

Closed-Loop Controller - Feedback

Logging

Monitor

Control

PID-Controller

By Arturo Urquizo - http://commons.wikimedia.org/wiki/File:PID.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=17633925

Controller Combinations

P
Proportional controller to reduce

the transient period.
Changes the magnitude only.

I
Integral controller to reduce the

time invariant error
Lags the output phase.

D
Derivative controller to minimize

the transient errors like overshoot,
oscillatory response.

Leads the output phase.

PI
Reduces rise time and steady state

errors
Changes the magnitude as well as

lags the output.

PD
Reduces rise time and transient

errors such as overshoot,
oscillations in output.

Changes both the magnitude as
well as adds a leading phase to the

output.

PID
General case of a controller. Can be
used to control the magnitude and

lead/ lag phase problems.
Changes the magnitude and can
add positive or negative phase to

the output as per the requirements.

https://medium.com/@svm161265/when-and-why-to-use-p-pi-pd-and-pid-controller-73729a708bb5

Code of Controller in TeSSLa

• See tessla.io

Controlling Robots

TeSSLa/ROS Bridge

include "TesslaROSBridge.tessla“
@RosSubscription("/reduced_scan_to_tessla", "int64", "10")
in scan: Events[Int]

Stop if there are short rays detected
def stop = scan < 20

@RosPublisher("/result_from_tessla_to_ros", "bool", "10")
out stop

Example
https://tessla.io/blog/rosBridge/rosBridge_jackal_video.m4v

https://tessla.io/blog/rosBridge/rosBridge_jackal_video.m4v

Conclusions

Conclusions

• Stream-based Runtime Verification makes sense
• TeSSLa one approach in this setting
• Supports handling of data

• Monitoring CPS makes sense
• Controlling using RV techniques makes sense
• Separation of concerns

Future Work

• Controller module in TeSSLa?
• More concrete examples?
• Gain more experiences?
• Programming (safety aspects) of robots?
• Better use Modellica and FMUs?
• Add continuous functions symbolically to perform algebraic

simplifications?

