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Why Reversibility?

Historical Reasons

Landaurer Principle (IBM) 1961

“any logically irreversible manipulation of information, such as the erasure of a
bit or the merging of two computation paths, must be accompanied by a
corresponding entropy increase in non-information-bearing degrees of freedom
of the information-processing apparatus or its environment”

« A so-called logically reversible computation, in which no information is
erased, may In principle be carried out without releasing any heat.

* This has led to considerable interest in the study of reversible computing.



Reversible Computation on the hype

https://spectrum.ieee.org/the-future-of-computing-depends-on-making-it-reversible

IEEE Spectrum Q. Type to search

THE FUTURE OF COMPUTING
DEPENDS ON MAKING IT

REVERSIBLE

It’s time to embrace reversible computing, which could offer dramatic improvements in energy efficiency




Aside Circuits

Reversibility or reversible behaviour can be found in other fields

« System biology (many biological reactions are reversible)

* Transaction / Checkpoint Rollback Schema / Failure handling primitives
* Reversible Debugging (gdb, undoDB, Mozilla RR)

 Record/Replay (reproducibility of system behaviour)

e Quantum computing



Reversible systems

* |n areversible system one can observe two flows of computation
 Normal one: computing in a forward way

 Backward one: undoing the effect of the forward one



Causal Consistent reversibility

 How you can undo a computation?
* |n a sequential setting this is straightforward: you start undoing for the last action
* |In a concurrent/distributed setting there is no clear definition of last action

* We can consider as last action any action which has no conseguences (e.g., it has not
caused anything)

 Hence an action can be undone provided that its consequences are undone beforehand
 Essentially any reached state is a state that can be reached just with forward moves

* This idea is used in transactions/rollback schemas where the system has to get back to
a consistent state



Reversibility in Concurrent System

Calculi

Reversible Communicating System (RCCS) Danos&Krivine

* Use of explicit memories to keep track of past events
* Suitable for complex languages (e.g., scales with pi-calculus, Erlang)
* Give the first notion of causally consistent reversibility
« Won CONCUR23 test of time award
CCS with communication keys (CCSK) Phillips&Ulidowski
* History information directly recorderded into the term
* Use of keys to keep track of synchronisations

» Suitable for CCS-like languages with LTSs



Example
a.P+b.0Q0 =5 P

After the computation, we loose information about

 The performed action a

 The other branch b.Q



CCSK

ali]
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History information
directly in the term

l

No need of extra memories

The two reversible CCSs have been shown to be equivalent LMM2021



Problem statement

 How do we adapt reversible process calculi to cope with
e Nondeterministic choices
 Probabilistic transitions

* Ensuring causal consistent reversibility



RPPC: reversible probabilistic process calculus

» A simple extension of CCS with probabilistic choice F',& G
* Synchronisation a la CSP

* Reversing a la CCSK

F,G : —O\a.F\Fp@G\F—I—G|FHLG
R.S : ali). R |® 1@ O Rp®1 O R+ S| RS

past action prefix past left/right choice



RPPC - action semantics
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RPPC - probabilistic transitions

* \We do not impose a strict alternation between nondetermistic processes and
probabilistic choices

 Probabilistic choices have to be resolved before nondeterministic one while
going forward

* A probabilistic choice cannot
* resolve a nondeterministic choice or
 decide who advances In a parallel composition

o Similar to time determinism in timed-semantics settings



RPPC - ilisti
C - probabilistic transitions Snippet
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RPPC properties

 Loop lemma: any transition can be undone

* Square property: two independent action can be always swapped Classical prOOfS

 BTIl: backward transitions are independent
* Challenges into defining causal equivalence <
* probabilistic choices take precedence over nondeterministic ones in the forward direction

* a swap between two concurrency action transitions is not always possible (unless probabilistic choices
have been resolved)

* Cannot use the axiomatization of Lanese, Phillips & Ulidowski to prove cc

Theorem 1 (causal consistency). Letw, and wy be two paths. Then wy < wo
ioff w1 and wo are both coinitial and cofinal. _



Application

 We have a language with reversibility and probabillistic choice

 What kind of computing paradigm has these two distinguished
characteristics?



Quantum computing

Due to the unitarity of quantum mechanics, quantum circuits are reversible, as
long as they do not "collapse” the quantum states on which they operate.

A qubit can be expressed as a superposition of two states
a|0) + B|1)

Indicating that with probability athe qubit is in state 0 and with probability 5 it is
In state 1



Qubit in RPPC

In RPPC we can model a qubit as follows:
Q = m.(2,®0)

Where
 m stands for measurement

» p Is the probability of being in state 0 (z for 0) and 1-p is the probabillity of
being in state 1 (o for 1)



Qubits

Qubit basis states can also be combined to form product basis states. A set of
qubits taken together is called a quantum register.

In RPPC a 2qubit register can be rendered as follows

QQ — m'(z°(qu@0)p@o°(ZQ2@o))

Wherep' d1 = |a|27 P (1 o Q1) — |/6|27 (1 _p) ‘g2 = |7|27 (1 _p) ' (1 _QZ) — ‘5|2



Modelling up a CNOT

control input | target input||control output|target output
0) 0) 0) 0)
0) 1) 0) 1)
1) 0) 1) 1)
1) 1) 1) 0)

CNOT = m.(z.2.2.2 +2.0.2.0+ 0.2.0.0+0.0.0".2")

RQ|lLCNOT



Conclusions

 We have studied causal reversiblility of a nondeterministic and probabilistic
calculus

 Showed how we can model (and simulate) quantum computing
* We plan to study behavioural equivalences for RPPC

 We plan to study the relation with (Markovian) time-reversibility
* |Investigate more relations with quantum

 Model some smart contract scenario with lottery vulnerabilities



